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An approach to compute the mean-first-passage time (MFPT) in bistable systems driven by colored
noise is presented. The approach is valid in the limit of large but finite noise correlation time and finite
noise strength, a case for which no satisfactory theory exists at present. Our approach is a modification
of the fluctuating-potential theory proposed in Phys. Rev. Lett. 61, 7 (1988). Excellent agreement is
found between our results for MFPT and that of the simulation results of Mannella, Palleschi, and Gri-
golini [Phys. Rev. A- 42, 5946 (1990)]. Interesting similarity between stochastic resonance and the

colored-noise problem is brought out.
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I. INTRODUCTION

Bistable systems driven by colored noise (BSDCN) acts
as a model for a wide variety of physical, chemical, natu-
ral, and engineering systems and has drawn wide atten-
tion in recent years [1]. BSDCN is one of the simplest
problems, coming under the broad class of problems
called “nonlinear non-Markovian stochastic processes.”
The equation governing BSDCN is

Xx=x—x3+&1), (1)

where £(#) is a mean zero Ornstein-Uhlenbeck (OU) noise
with correlation

(E(E(L"))=(D /T)exp(—|t —t'| /7)),

D is the noise strength, and 7 is the noise correlation
time. The dynamics of Eq. (1) can be visualized as an
overdamped motion of a ball in a bistable potential
V(x)=x*/4—x2/2, in the presence of the OU noise.
The bistable potential has an unstable state at x =0 and
two stable states at x =+ 1, x = —1 separated by a bar-
rier of height }. Two quantities of interest are (1) the sta-
tionary probability density function (SPDF) of x and (2)
the mean first passage time (MFPT) for x to go from one
stable state to another. Presence of OU noise in Eq. (1)
makes x non-Markovian, and this coupled with the non-
linear nature of Eq. (1) makes it difficult to compute the
statistical quantities, especially the SPDF of x and the
MFPT. There is no simple Fokker-Planck-like equation
for the evolution of the probability density function of x.
Also, we do not have an exact, closed-form formula for
the MFPT valid for a general colored noise. Various ap-
proximate theories for computing the MFPT, valid in the
limit of small D and small or large 7, have been put forth
[2]. We restrict our discussions to the large-7 limit. All
existing theories valid in the limit of (7/D)— c predict
the exponent of the MFPT to.be (27)/(27D) [3-8] (but
see also Ref. [9]). But the convergence of theories of
Refs. [3-8] to the limit (7/D)— o is very slow [10(a)],
and this limit is inaccessible by practical numerical simu-

47

lation [10(b)]. Hence the validation of theories of Refs.
[3—-8] can only be done at large but finite 7. For finite 7,
theories of Refs. [3—6] underestimate the MFPT, whereas
Ref. [7], and especially Ref. [8], reproduce the MFPT
fairly well [5,11,12]. However, Refs. [7] and [8], which
are based on the path-integral formalism, invoke small-
ness of D for carrying out the steepest-descent approxi-
mation while computing the MFPT. Thus all existing
theories fail in the limit of finite 7 and finite D. We at-
tempt to fill this gap through this paper.

The paper is organized as follows. As our approach is
an adaptation of the fluctuating potential theory (FPT),
we first review FPT and its modifications in Sec. II. The
adiabatic approach to the MFPT computation is present-
ed in Sec. III. Here we derive an analytical formula for
the escape rate (the inverse of MFPT) in the limit of finite
D and finite 7. In Sec. IV our results for the MFPT are
compared with that of the simulation results reported in
Ref. [12] and the outcomes are discussed. In Sec. V we
reconsider the equation for the escape rate derived in Sec.
III. In Sec. VI we bring out the interesting similarity be-
tween the stochastic resonance phenomenon and the
colored-noise problem. Finally, our results are summa-
rized in Sec. VII.

II. FLUCTUATING POTENTIAL THEORY
AND ITS MODIFICATIONS

The FPT uses the fact that for large 7, noise is slower
than the system variable x of Eq. (1) [3]. Invoking adia-
batic elimination principle, one assumes that x will al-
ways be found in the instantaneous potential minima
determined by £(¢). As &(¢) increases, the Brownian par-
ticle initially at x = — 1 adiabatically follows the potential
minima. When &(¢) reaches §{ = +2/(3V3), the poten-
tial minima merges with the potential maxima at
x =—1/V'3, and transition to the positive well takes
place immediately.

de la Rubia et al. have modified the FPT based on the
following argument [4]. When £(t) reaches &, potential
at x =—1/V'3 becomes flat and sufficient drift may not
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be available for the Brownian particle to roll down from
x =—1/V3to x =0in a time of O (7). This results in an
unsuccessful transition for finite 7. Hence for a successful
transition from the negative well to take place £(¢) should
reach a larger, T-dependent value, £, determined by the
equation

N __dx _ .
-1/V3ix —x3+E,

Reference [5] generalizes the idea of FPT and that of
Ref. [4] and predicts the value of £(¢) needed for a transi-
tion from the negative well to be §.(1+(1/7)). There is
a definite improvement in predicting the MFPT by Refs.
[4] and [5], but they still underestimate the MPFT for
large 7 [11].

Our own result [13] indicates that the value of &(t)
needed for a successful transition to be even larger than
the value predicted by Refs. [4] and [5]. This fact will be
used to arrive at the limitations of the theory presented in
this paper. Our above-mentioned claim on the value of
£(t) needed for transition is based on two reasons. First,
we point out that the FPT breaks down when
V" (x)]| <1. Since V"(x) [the second derivative of the
bistable potential, ¥"'(x)=3x?—1] vanishes at
x==+1/v3, x does not adiabatically follow £(¢) for 7> 1
in the regions —V/(7+1)/(37)<x < —V/(r—1)/(37) and
+V(r—1)/37)<x <+V(r+1)/(37). The second
point is that for an Ornstein-Uhlenbeck noise of correla-
tion time 7 typical realizations rise and fall exponentially
in a time of O (7). Using these two points it can be shown
that for finite 7, x will not reach —1/v'3 when &(2)
reaches &,.. Further, for finite 7, we have argued in Ref.
[13] that it is better to view the escape mechanism as
caused by noise spikes with a rise and fall time of O (7).
Simulation of the bistable system with such noise spikes
show that typically £(¢) has to reach a value higher than
what has been predicted by Refs. [4] and [5] for a transi-
tion to take place.

III. ADIABATIC APPROACH

We first recall the way by which an Ornstein-
Uhlenbeck process of strength D and correlation time 7 is
generated from a white noise [1]. It is given by the equa-
tion

E()=(—1/7)&(t)+n(t) , (2)

where (7(#)) =0 and {7(t)n(t')) =(2D /7*)8(¢t —1').
Equation (2) suggests that in the limit 7— o0, £(¢) can
be viewed as a superposition of a smooth exponentially
varying value £(7), varying over a time of O(7), and a
white noise of strength D /72. The effect of this white
noise is then to make x in Eq. (1) fluctuate around the in-
stantaneous potential minima determined by £(7). In oth-
er words, in the limit 7— o, one can assume the effect of
the smooth variation £(7) on x and the effect of white
noise on x to be independent. However, this distinction
becomes meaningless for small and intermediate 7, that
is, for 7V'"'(x =0) < 1. When D is finite, the fluctuation of
x caused by this white noise may lead to a transition to
the other well even prior to &(7) reaching £.. The white-
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noise-induced escape at a given E(f) occurs at a rate
determined by D /7? and the instantaneous barrier height.
When &(7) is near O, the white-noise-induced escape rate
is small, but the escape rate from the negative (positive)
well increases as £(7) increases towards £, (—§&,), due to
the decrease in the barrier height. In fact, for finite 7,
when the MFPT due to the white noise of strength D /7°
at a given £(z) becomes comparable with 7, we can as-
sume the transition to take place in a time of O (7).

Yet another way of looking at the effect of £(#) on x at
finite D and finite 7 is as follows. The instantaneous po-
tential of Eq. (1) is given by V(x)=x*/4—x2/2—&(1)x,
where £(¢) has two parts: (1) a smooth exponentially
varying part £(z) and (2) a white-noise part of strength
D /7%. The effect of E(7) is to slowly tilt the potential [i.e.,
in a time of O(7)], and the effect of the white noise is to
randomly vibrate the potential around the tilted position
determined by £(z). Therefore even before £(z) reaches
&, the random vibrations due to the white noise can
cause the well in which the particle is present to disap-
pear. But note that since variations in the white noise
n(t) are faster compared to that of £(¢), 7(¢) [and hence
£(1)] has to reach larger values compared to £(7) so that x
can roll down deterministically from its position fixed by
E(t) to 0.

Further, we note that FPT is valid only in the limit
(r/D)—> o and D—0. It can be seen that all the
modifications of FPT proposed so far [4,5,13] correct the
FPT when 7 is finite, but still demand (7/D)— « by let-
ting D —0. For large but finite 7, only in the limit D —0
is it correct to assume that a transition will not occur un-
less £(7) reaches &.. However, if both 7 and D are finite,
transitions can occur even prior to £(¢) reaching ., and
the below-mentioned adiabatic approach needs to be in-
voked. In this context the validity of the white noise and
the small-7 theories can be recognized to be in the limit
(7/D)—0 and with a nonvanishing D.

Henceforth, by a transition we always mean transition
from the negative well to the positive well, unless other-
wise specified. In the light of the above discussion, we
then propose the mean escape rate of x, in the limit of
large 7 and finite D, to be given by the formula

¢,
R=[ "dEP(OR(E), (3)

where £, [=+2/(3V'3)] is the value of £(¢) when the
negative well of the potential corresponding to Eq. (1)
vanishes. P (&) is the stationary probability density func-
tion of the OU process defined in Eq. (2),

- gZT
2D

P (&)= Xp (4)

V2aD /7 €
R (&) is the escape rate of x due to the white noise of
strength D /72 from the instantaneous potential minima
to the instantaneous potential maxima, when &(7)=¢.
Equation (3) arises due to the following reason. We want
the escape rate of x at stationarity (i.e., stationarity of x
as well as £). At any arbitrary time the probability that
E(t)=¢ is P,(£). The escape rate of x is then the escape
rate R (&) due to white noise of strength D /72, given
E(1)=¢, averaged over the SPDF of £(z). One need not
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get confused, by viewing the MFPT of x to be the average
of the MFPT of £(7) to £, added to the MFPT of x to the
other well due to white noise at £(z)=¢£. This will in turn
demand that the MFPT due to white noise to the other
well be shorter than the correlation time 7, leading to a
conceptual problem. The usage of P(£) and the escape
rate instead of the MFPT avoids the possible confusion.
Note that in Eq. (3) we have not integrated £ over the
ranges £ = £, and — o <£=<0. We will analyze Eq. (3) by
including these ranges of integration in Sec. V and rule
out these ranges of integration based on physical
grounds.

Changing the variable from £ to x in Eq. (3), where x is
the position of the instantaneous potential minima when

E(1)=&, we have

VA% 1 —(x3=x)*r
R f_! dx D e exp 2D
2_
X&—:’——U—R(x). (s)

[3x2—1| is the Jacobian of transformation £=x3—x.
Factor 3 arises because x*>—x —£=0 has three roots for
x, in the range 0=&<¢&,. R(x) is the Kramers escape
rate due to white noise of strength D /7> when x is the
potential minima and is given by

—72AU(x)

V2
R (x)= — €Xp D

, (6)

where AU (x)=U(x,)—U(x3;) is the barrier height when
x is the potential minima, and U(x)=(x*/4)—(x2/2)
—(x3—x)x.

The potential maxima x, and the potential minima x,
(=x) are two of the three roots of the equation
x3—x =§, which are given by [14]

x,=2v/1cos(a/3),

_ ~ a 7
Xy3=—21"1cos 33|
where
| P=x)v27
a=cos™! |-

We have performed the numerical integration of Eq.
(5) for various values of 7 and D and the results obtained
are discussed in the next section. Before concluding this
section we clarify an important point. The Kramers es-
cape rate R (x) given in Eq. (6) should actually read

= exp

T

—72AU(x)

R (x) D

7N

However, as § approaches £, both the potential minima
and the potential maxima approach each other and
V"'(x) at both these points approaches zero. In this limit
the prefactor of R (x) tends to zero and the MFPT ex-
plodes. As it is difficult to fix the ranges for the value of
potential minima x beyond which Eq. (6) becomes in-

valid, we are forced to use the approximate equation (6)
throughout the range —1=<x < —1/V'3. Further, we
will show at the end of Sec. V that the distribution of
P (£)R (&) has to be confined well within the range
0=¢=¢, for Eq. (3) to be valid. A consequent limitation
on Eq. (5) restricts its integrant to be distributed well
within —1<x <1/v'3. As Eq. (6) for R (x) becomes ac-
curate with this restriction on Eq. (5), we are consistent
in the usage of Eq. (6) in Eq. (5).

IV. COMPARISON OF MFPT OBTAINED BY
ADIABATIC APPROACH WITH THE
SIMULATION RESULTS

Figure 1 shows the comparison of the results for the
MFPT, )t !, obtained by numerical integration of Eq. (5)
with the simulation results for T, of Mannella, Palles-
chi, and Grigolini [12]. T is the MFPT from the bot-
tom of one well to that of another well. Simulation re-
sults for the MFPT (T, ) for D =0.2 and 0.3 are taken
from Table I of Ref. [12], whereas for D =0.25, 0.35, and
0.4, Ty, is computed from Table III of Ref. [12] using
the fitting parameters (see Ref. [12] for full details of this
computation). R~! actually corresponds to Ty, the
MFPT to the top of the barrier. Since Ty, =T\, in the
ranges of D and 7 considered, and due to the nonavaila-
bility of T, for D =0.25, 0.35, and 0.4, we have com-
pared R~! with T, of Ref. [12]. We find excellent
agreement between our results with that of Ref. [12] for
D =0.3 over the entire range 1 =<7 =10 considered. An
agreement within 20% error is found for D =0.25 and
0.35. For D =0.2 and 0.4 the agreement is rather poor.

We offer the following explanation for the behavior of
the results shown in Fig. 1. From Eq. (3) we see that the
escape rate of x is the integral over the product of P (§)
and R (£). For values of & close to £=0, R (&) is less
whereas P (£) is more. This situation reverses near
&(t)=§&,. Hence, for finite D the peak of the product
P.(E)R (&) occurs at 0<E=<E,. Let us examine the ex-

In(
(o2}
T

L I L ! 1 1 L 1 J

2 3 4 5 6 7 8 9 10

—l=uqo

FIG. 1. In(T) as a function of 7 for various values of D. Solid
lines are results of Eq. (5) with (—1<x < —1/V/3) as the range
of integration of x. From top to bottom D =0.2, 0.25, 0.3, 0.35,
and 0.4. Symbols are results of Ref. [12]: solid circles, D =0.2;
diamonds, D =0.25; open circles, D =0.3; squares, D =0.35;
and crosses, D =0.4.
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ponential factor occurring within the integral of Eq. (5),
i.e.,

exp | =T
D

(x3—x)?

3 +7AU(x)

In the limit (7/D)— o, the integral in Eq. (5) is dom-
inated by the values of x which make
{(x3—x)? /2+TAU(X } smaller. As x increases from —1
to (—1/v3), (x3>—x)? increases, whereas 7AU (x) de-
creases. For large 7, 7AU (x) dominates (x*—x)%. Hence
for large 7 and in the limit (7/D)— o the integral in Eq.
(5) is dominated by values of x close to —1/V'3 and R
approaches the leading order, the well-known limit
exp[(—27)/(27D)] [3-8].

Dominance of the integral in Eq. (5) by values of x
close to —1/V'3 in the limit (7/D)— o introduces the
following errors in Eq. (5).

(1) As we have already pointed out, the FPT breaks
down for finite 7 near x = ¥ 1/V/3. It can be shown that
the Brownian particle lags behind the potential minima
and will not reach ¥ 1/V'3 when &(¢) reaches 2 /(3V'3)
for a typical noise realization of finite correlation time.
Hence P (x), which gives the SPDF of the position of the
potential minima when £(¢)=§&, does not represent the
SPDF of the position of the Brownian particle P (xgp),
for finite 7 in the region of breakdown of the FPT.
P (xgp) is the one we should actually use, along with the
escape rate from xgp to the potential maxima in Eq. (5).
In fact, P(xgp=y)<<Py(x =y) for y in the region of
breakdown of the FPT. By assigning higher probability
for transitions over smaller barrier heights (i.e., for small-
er MFPT’s), Eq. (5) underestimates the correct MFPT in
the limit of finite 7 and (7/D)— .

(2) When escape occurs to the potential maxima for
value of £ less than but near £, the potential between
x =—1/V'3 and x =0 is flat, and transition to the other
well may not be successful at finite 7 (de la Rubia et al.’s
argument [4]). This factor leads to further underestima-
tion of the MFPT by Eq. (5) in the limit of finite 7 and
(1/D)— . But note that for finite D escape to potential
maxima occurs at values of £ considerably less than £,
and the deterministic drift in the region (—1/v'3)<x <0
will be sufficient for the transition to the positive well.

The above-mentioned two points explain the reason for
the underestimation of the MFPT by Eq. (5) (as shown in
Fig. 1) in the limit of finite 7 and (7/D)— o (or D —0 at
finite 7). Hence Eq. (5) is unsuitable for finite 7 and
D —0, and this limit requires an entirely different treat-
ment [13]. Note, however, that the limit (7/D)— o,
favoring transition over lower barrier heights, does not
invalidate the usage of the Kramers formula for escape
rate. This is because the strength of the white noise
(=D /7?) also decreases in the limit (7/D)— . For
very large D but finite 7, Eq. (5) is obviously not valid be-
cause Kramers formula for escape rate itself becomes in-
valid, even when the potential minima is near x = —1.
This explains the disagreement of our results with that of
Ref. [12] for D =0.4.
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V. EQUATION FOR R RECONSIDERED

We now reconsider Eq. (3) by extending the range of
integration of £ to —ow <£<+ . In fact, to have
mathematical consistency one should integrate the SPDF
of £ over the entire range of £. First we include the range
— o0 <£=0 for integration in Eq. (3). Integration over
this range amounts to the fact that we are accounting for
the escape that takes place from the negative well even
when it is deeper than the positive well. From a first look
one may conclude that there is no reason why one should
not include this contribution to the MFPT. But we rule
out this range of integration on physical grounds. First
we note that for —e <§=< —§_, the positive well van-
ishes and escape to the positive well loses meaning. So
we have to include only the range —§&, <& <0 in Eq. (3).
We have performed numerical integration of Eq. (5) cor-
responding to the limit —&. <& <&, and found that the
resulting MFPT explodes, instead of adding a small
correction to our previous result shown in Fig. 1. This
behavior is of no surprise and it is an expected result for
the following reason. P (&) is symmetrical about £=0,
whereas R (£) becomes very small for £ <0. So integra-
tion of Eq. (3) in the range —§&, <&=< +&, assigns the
same probability to the escape rate R (+§&) and R (—&).
This accounts for the explosion of the MFPT. Both +£
and — £ are equally probable, but the escape rate at +£ is
much higher than the escape rate at —£. Naturally the
first passage of the Brownian particle to the barrier top
will occur only when &(7)= +¢£ rather than at £(7)= —&.
This explains the reason for the omission of the region
— o <£=0in Eq. (3).

We now consider the range &, <& < o0, in which case
the negative well vanishes and the barrier height becomes
zero. However, the escape rate R (x) cannot be fixed
easily for £(7) > £,. For D —0, and for finite 7, £(7) has to
typically reach a value f larger than &, for a transition to
take place [4,5, 13], and in this limit the escape rate is
zero for £, <¢<E and 1 for £>£. However, for large D
the escape rate is almost close to 1 for £§=&,. For finite
D, in which we are presently interested, we then approxi-
mately fix the escape rate R (§) as 0.5 for £= &,.

We performed the numerical integration of Eq. (3) in
the range £>0 [correspondingly, —1<x <—1/V'3 and
x >2/V'3 in Eq. (5), with R (x)=0.5 for x >2/V3]. The
corresponding results for T, are again compared with
that of Ref. [12] and is shown in Fig. 2. We find that the
agreement between our results and those of Ref. [12] im-
proves for D =0.2, and notably for D =0.25. However,
the results for D =0.3 and 0.35 deviate more. Better
agreement of the MFPT for smaller values of D is due to
the fact that in the limit D —0 the contribution to the
MFPT when £= £, is appreciable and we are accounting
for this in the results shown in Fig. 2. By the same token,
as we have argued that first passage will take place only
when £(¢) is at + £ rather than at —§&, it can be seen that
for large D the first passage will take place from values of
E£(?) near the peak of the product P,(£)R (£) rather than
for £=£.. This factor is responsible for the discrepancies
of results for D =0.3 and 0.35, as shown in Fig. 2.

We conclude that Eq. (3) is valid only when the majori-



47 ADIABATIC APPROACH TO MEAN-FIRST-PASSAGE-TIME . . . 1593

L

1

2 3 4 5 6 7 8 9 10

1
1

FIG. 2. In(T) as a function of 7 for various values of D. Solid
lines are results of Eq. (5) with (—1<x<—1/V3 and
Xx =2/V'3) as the range of integration of x. From top to bottom
D =0.2, 0.25, 0.3, and 0.35. Symbols are results of Ref. [12]:
solid circles, D =0.2; diamonds, D =0.25; open circles,
D =0.3; and squares, D =0.35.

ty of distribution of the product P (£)R (§) lies within the
range 0<£=<¢.. Hence we exclude the range of integra-
tion £= £, in Eq. (3) and restrict the validity of Eq. (3) to
finite D. Consequently, in the case of Eq. (5) we confine
the range of integration of x to be —1<x <—1/V'3 and
require its integrant to be distributed well within this
range. We recall that with this restriction on Eq. (5), we
are consistent in using Eq. (6) for R (x).

VI. CONNECTION BETWEEN STOCHASTIC
RESONANCE AND THE COLORED-NOISE PROBLEM

Note the interesting similarity between our approach
and the adiabatic approach used in the context of sto-
chastic resonance (SR) [15]. The validity of the adiabatic
approach to SR requires the external forcing frequency to
be smaller than the Kramers escape rate due to the white
noise. Analogously, our approach requires smallness of
1/7 to allow for slow variation of the potential and also
simultaneously requires largeness of D /72 to have a large
escape rate caused by the white noise. These two
conflicting requirements can only be satisfied for a nar-
row range of D and 7. This very clearly explains the be-
havior of our results shown in Fig. 1.

We further discuss the striking similarity between SR
and a bistable system driven by strongly correlated noise
(BSDSCN). We have seen that at large but finite 7 OU
noise can be viewed as a superposition of a slowly varying
value Z(¢) and a white noise of strength (D /7%). Both SR
and BSDSCN have the commonality of a bistable system
and a white noise, the only difference being that in SR we
have a periodic forcing whereas in BSDSCN the forcing
is random. We encounter a resonance in the escape rate
in SR for certain ranges of the parameters involved. It is
then natural to ask whether a resonance like phenomenon
occurs in the case of BSDSCN also.

We now present arguments based on physical grounds
supporting the existence of a resonance phenomenon in
the case of BSDSCN. For very large 7 noise is mostly
deterministic and the effect of the white noise (of strength
D /7*) part of OU noise is negligible and escape occurs

only when &(f) reaches +£,. For 7—0, OU noise ap-
proaches white noise and the £(7) is always 0. Escape
occurs at Kramers rate due to the white noise part of OU
noise with the barrier height U(x =0)—U(x =—1)=1,
corresponding to £(z)=0. In the intermediate 7 regime
escape occurs due to both the white noise factor as well
as due to £(7) factor. Hence we can expect a value of 7
when both these factors are in resonance.

To put it differently we can identify two adiabatic lim-
its, one at small 7 (where x is slower than noise) and
another at large 7 (where noise is slower than x, except in
the region of invalidity of FPT). In each adiabatic limit,
one of two factors of the OU noise—the white noise or
&(t)— plays the dominant role and the other a minor
role in causing transitions. At the point of separation of
these adiabatic regimes both these factors may aid each
other, enhancing the escape phenomenon. Note that the
value of 7 separating the two adiabatic limits is space
dependent and hence occurs at different 7 for different x.

A theoretical analysis for predicting a resonance at in-
termediate 7 is not as straightforward as in the case of
SR. Resonance occurs in SR due to the synchronization
in the enhanced net escape rate (from the shallower well
to the deeper well averaged over one-half of the period of
the forcing signal) with the external frequency. In the
case of colored noise there is no periodicity to maintain
synchronization. However, statistically speaking we can
assume the OU process to reach the value £, [or the value
of &(7) needed for transition as predicted by Ref. [13]]
periodically with a period equaling the MFPT to reach
that value which is also the T, for x. Hence we can ex-
pect a resonant increase in a statistical quantity, such as
T, but not in a deterministic quantity, such as the posi-
tion of x (which we take as the output signal in the SR
case).

With the confidence given by the above-mentioned
physical arguments we searched for a resonance in
BSDSCN. But we do not see any peak in the MFPT vs 7
curve, and it is monotonic. However, refer to Fig. 2 of
Ref. [8] and Fig. 3 of Ref [12]. The
(S[r]—S[0])/S[>] vs 7 curve of Refs. [8] and [12]
show a peak. It is tempting to speculate that this peak is
due to the resonance between the above-mentioned two
factors responsible for escape at intermediate 7. The
peak is at 7=1 in Ref. [8] and is between 3 and 7 in Ref.
[12].

We supply the following reasons supporting our specu-
lation. We first concentrate on 7, the value of 7 separat-
ing the two adiabatic limits at x =0. From the equality
7V"(x =0)=1, we may come to the conclusion that
7=1. We now argue that 7 is actually D dependent and
is equal to 1 only for D =0. First note that 7 itself is a
statistical quantity and the time scale of evolution of £(¢)
itself is time dependent and random and its distribution
depends upon D and it equals 7 only on the average. Fur-
ther, only in the limit D —0, the time scale of evolution
of £(¢) has a narrow distribution around 7 and 7 becomes
1 and 7 always greater than 1 for finite D.

Alternatively, as 7 becomes greater than 7, the large 7
adiabatic limit, and hence the FPT, starts its influence.
As 7 increases, the region of validity of FPT grows
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around x =0 and reaches |x| <1/V3 for 7— . Also,
once x touches the region of validity of FPT, x crosses
this region quickly and the transition to the other well is
immediate. This argument generalizes the FPT for finite
7. In this context it can also be seen that different
theories put forth for extending FPT for finite 7 [4,5,13]
attempt to find the value of £(¢) needed for x to touch the
region of validity of FPT. The tendency of x to cross,
rather than to stay in, the region of validity of FPT
means x experiences a finite drift toward the other well.
As the deterministic drift is small around x =0, drift on x
has to come from £, and therefore the most probable
value of £ at x =0 deviates from £=0 for 7= 7, causing a
hole in the SPDF of the (x,£&) for 7= 7 [16]. The above
arguments bring out the connection between FPT and the
hole phenomenon. Similar arguments supporting this
connection have been already put forth in Ref. [16(a)].
We further note from Ref. [16(b)] that the minimum
value of 7 needed for the hole to set in (which is also 7) is
D dependent and is 1 for D —0.

Coming back to the value of 7= at the peak in
(S[7r]—S[0])/S[ ], we note that Ref. [8] invokes the
limit D —0. Hence 7, the separating point of the two
adiabatic regimes (where we expect a resonance to occur),
is 1. This supports the speculation that the peak in
(S[7r]—S[0])/S[oo] is due to a resonance mechanism.
It also explains the deviation of the peak value of Ref.
[12] from 7=1. The simulation results reported in Ref.
[12] were carried out at finite D, and D In(7’) has been ex-
trapolated to D =0 in Fig. 1 of Ref. [12]. Because of this,
S[7] and Sy, [7] of Table III of Ref. [12] differ. This
seems to be responsible for the peak in
(S[7]—S[0])/S[ = ] predicted by the simulation results
of Ref. [12] being at a value different from 7=1.

However, it remains to be explained why, if there is a
resonance in the escape mechanism at finite 7, it shows up
as a peak in the normalized exponent of the MFPT and
not in the MFPT itself. Much remains to be understood

with regard to the connection between SR and BSDSCN.
If indeed a resonance occurs in BSDSCN, it would be
very interesting to study and, more than that, challenging
to develop the theory behind it.

VII. CONCLUSIONS

Before summarizing the main points of this paper we
point out that Eq. (5) underestimates the MFPT for small
D, but overestimates the MFPT for large D. Any formu-
la showing such a behavior should be viewed with suspi-
cion because it is bound to estimate the MFPT correctly
for some D and any modification in the formula will just
shift the point of coincidence. So coincidence does not
validate the correctness of the formula. But we point out
that the dependency of MFPT on D is rather well under-
stood (see Ref. [12]) and it is the dependency of the
MFPT on 7 that poses a problem. Since Eq. (5) captures
the 7 dependency of MFPT very well (though only over a
narrow range of D, reasons for which have been given),
Eq. (5) escapes from the suspicion raised.

Finally, we summarize the main points of this paper.
We have proposed a simple formula for the escape rate in
BSDCN valid for finite D and finite 7. The only existing
theory for large but finite 7 giving satisfactory results is
the path-integral method [7,8], but it is restricted to small
D. Our approach, which is valid for finite 7 and finite D,
can be viewed as a complementary approach to the path-
integral method. Further, interesting similarities between
the stochastic resonance phenomenon and the colored-
noise problem are shown.
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